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10.1	Introduction	
	
Nanocomposites	[1]	in	general	have	gained	importance	in	nowadays	products	leading	to	
improved	performance	of	these	complex	compound	materials.	The	structure	of	the	solid	
particles	is	not	limited	in	terms	of	shape	in	advance,	but	their	specific	function	is	tightly	
connected	to	their	shape.	Scattering	experiments	[2,	3,	4]	are	often	employed	to	
supervise	production	routes	and	the	final	performance,	but	not	all	possibilities	of	
scattering	experiments	are	exploited	due	to	several	reasons:	Engineers	need	to	enter	the	
unknown	stage	of	scattering	experiments,	and	the	scattering	experts	need	to	simplify	
their	experience	to	simple	usable	recipes	that	are	applicable	and	reliable.	This	process	is	
still	ongoing	and	the	authors	hope	to	contribute	to	this	highly	interesting	journey.			
	
The	advantages	[5,	6]	of	clay-polymer	nanocomposites	[7]	are	already	explored:	
mechanical	improvements	[8,	9],	fire	retardancy	[5],	and	gas	permittivity	[10].	A	good	
dispersion	state	is	not	always	given	a	priori,	and	special	strategies	need	to	be	employed	
[11,	12]:	One	might	need	strong	shear	fields,	or	even	chemical	modifications	which	
either	cover	the	clay	with	surfactants	to	reduce	the	surface	tension	or	directly	graft	
polymers	to	the	particles.	The	obtained	results	of	such	measures	need	to	be	explored.	
Here	scattering	experiments	come	into	play.	They	allow	for	characterizing	the	
dispersion	state	and	give	feedback	to	the	dispersion	strategy.	When	employing	
microscopic	models	to	connect	the	nanostructure	with	the	macroscopic	behavior,	new	
insights	might	be	gained	that	would	allow	for	predictive	tailoring	of	the	macroscopic	
behavior.	For	instance	the	prediction	of	rheological	properties	of	clay	containing	
systems	is	still	a	demanding	task.	
	
	
10.2	Scattering	Techniques	
	
Scattering	techniques	have	historically	been	employed	to	atomistic	structures	that	have	
not	been	accessible	by	direct	imaging	techniques	at	that	time	[13].	They	make	use	of	the	
wave	property	of	the	probe,	which	then	is	often	regarded	as	radiation.	The	interaction	of	
quantum	mechanical	wave-like	particles	with	matter	gives	rise	to	scattering.	The	careful	
interpretation	of	the	scattering	patterns	then	allows	for	concluding	on	the	original	
structure	[14,	15].	This	rather	indirect	view	of	the	real	structure	makes	the	technique	
rather	complicated,	but	it	also	has	its	strengths:	
	

1. Most	often,	the	radiation	dose	rates	are	such	low,	that	the	scattering	technique	is	
non-destructive.	



2. Most	often,	reasonable	thicknesses	for	the	sample	can	be	chosen.	The	radiation	
can	penetrate	the	respective	thickness	of	sample,	which	otherwise	might	be	
inaccessible	to	other	techniques.	Also	environments	for	external	stimuli	are	
possible,	such	that	in-situ	and	in-operando	experiments	can	be	conducted.	

3. Most	often,	the	probed	volumes	are	rather	large,	such	that	the	obtained	structure	
is	highly	representative	for	the	distribution	of	configurations	inside	the	sample.	

4. The	investigated	length	scales	are	given	by	the	wavelength	of	the	probe.	While	
many	other	direct	imaging	techniques	start	to	catch	up	on	the	nano-	and	
Ångström-scale,	scattering	is	still	often	the	method	of	choice	at	small	length	
scales.		

	
A	few	drawbacks	of	the	scattering	method	shall	not	be	kept	secret:	
	

1. The	method	is	indirect,	and	some	expertise	is	needed	to	interpret	scattering	data	
well.	

2. Since	intensities	are	detected	at	the	end,	phases	of	the	scattered	radiation	field	
are	lost.	This	results	in	a	certain	loss	of	information,	that	is	often	overcome	in	
several	ways:	(a)	complementary	techniques	are	used	to	such	a	degree	that	the	
results	are	extremely	firm	[16],	(b)	reverse	Monte	Carlo	and	maximum	entropy	
techniques	display	the	most	probable	structures	[17,	18,	19,	20],	and	(c)	multi-
dimensional	contrast	variation	experiments	overcome	the	phase	problem	to	
considerable	extent	[21].	

	
We	will	deal	with	the	two	problems	in	the	following	manner:	The	main	goal	of	this	
article	is	to	disseminate	the	expertise	about	scattering	experiments	on	systems	
containing	clay	particles,	such	that	the	reader	will	be	able	to	obtain	important	
information	of	his	own	experiment	afterwards.	For	complementary	information,	it	is	
often	enough	to	know	that	the	clay	particles	are	platelets.	Employing	scattering	
experiments	for	characterizing	clay	nanocomposites	is	not	new.	Some	examples	can	be	
found	in	References	[22,	23,	24,	25].	
	
	
10.3	Small	Angle	Scattering	and	Wide	Angle	Scattering	
	
The	two	scattering	methods	at	smaller	and	larger	angles	have	many	aspects	in	common,	
and	only	a	few	additional	simplifications	apply	to	the	small	angles	[14].	Both	of	them	
imply	that	the	energy	after	the	scattering	process	is	not	analyzed,	which	most	often	
results	in	a	simpler	interpretation.	Mostly,	the	investigated	structures	move	on	such	
long	time	scales	that	the	inelastic	scattering	process	can	be	neglected	for	the	
interpretation,	and	the	experiment	aims	at	the	pure	structure.	
	
A	classical	layout	of	a	scattering	experiment	is	displayed	in	Figure	1.	The	incident	beam	
is	obtained	from	a	radiation	source	that	then	is	prepared	in	terms	of	energy	and	
direction.	The	monochromator	selects	a	certain	energy	of	the	radiation,	and	the	
collimation	limits	the	possible	directions	of	the	radiation	by	having	at	least	two	
apertures	at	a	certain	distance	C.	The	prepared	beam	hits	the	sample,	and	is	either	
scattered	or	transmitted	by/trough	the	sample.	The	transmitted	radiation	is	often	not	
considered	in	very	detail,	and	therefore	is	blocked	by	a	beam	stop	in	the	straight	
direction.	The	detector	detects	the	scattered	radiation	in	terms	of	intensity	as	a	function	
of	the	scattering	angle	2θ.	Large	area	detectors	cover	large	solid	angles	at	the	same	time,	



while	small	detectors	need	to	be	moved	along	a	range	of	scattering	vectors.	Most	often,	
the	collimation	distance	C	is	rendered	symmetrical	to	the	detector	distance	D,	and	the	
entrance	aperture	dimension	dE	is	double	the	sample	aperture	size	dS,	and	comparable	
to	the	spatial	detector	resolution	dD.	The	described	spatial	dimensions	serve	for	an	
optimal	intensity	at	best	possible	resolution	[14,	15]	(see	also	chapter	10.9).	
	
	

	
Figure	1:	A	schematic	view	on	a	(small)	angle	scattering	experiment	with	
monochromator,	collimation,	sample	and	detector.	A	typical	small	angle	scattering	
intensity	distribution	is	depicted	right	to	the	detector.	
	
	
Small	angle	scattering	instruments	keep	large	area	detectors	around	the	central	beam	
stop,	and	therefore	collect	much	scattered	intensity	simultaneously.	Wide	angle	
machines	tend	to	have	movable	detectors	that	might	be	limited	to	single	or	several	tube	
detectors.	
	
In	order	to	connect	the	collected	intensity	distribution	to	physical	parameters	of	the	
sample	(namely	its	structure),	the	abstract	scattering	vector	Q	replaces	the	scattering	
angle	2θ	in	terms	of:	
	

𝑄 =
4𝜋
𝜆 sin𝜃	

	 (1)	
	
It	carries	the	reciprocal	unit	of	the	radiation	wavelength	λ,	and	therefore	the	Q-space	is	
also	called	reciprocal	space.	For	small	angles,	the	sin-function	is	linear,	and	we	can	
approximate:	
	

𝑄 ≈
2𝜋
𝜆 ∙ 2𝜃	

	 (2)	
	
The	meaning	of	the	reciprocal	space	becomes	most	clear,	when	the	scattering	pattern	
shows	peaks.	Then,	the	peak	position	Qmax	indicates	a	preferred	length	scale	ℓ:	
	

ℓ = 2𝜋𝑄max!! 	



	 (3)	
This	concept	also	holds	for	characteristic	transitions	or	features	in	the	intensity	profiles,	
which	are	located	at	a	certain	Q-vector.	Very	often,	the	numeric	prefactor	of	2π	changes	
then	a	little.	
	
Throughout	this	manuscript	we	assume	the	scattering	pattern	to	be	isotropic;	that	
means	the	azimuthal	angle	of	the	intensity	distribution	does	not	play	a	role.	This	often	
appears	even	from	scattering	of	platelet	particles	when	the	different	configurations	of	
several	particles	appear	over	all	directions.	This	explains	why	originally	the	scattering	
vector	𝑄 ≡ 𝑸	is	a	real	vector,	but	practically	often	reduces	to	a	scalar	magnitude	Q.	
	
10.3.1	Absolute	calibration	
	
While	the	Q-axis	reveals	important	information	about	several	typical	sizes	in	your	
sample,	the	absolute	intensity	is	connected	to	the	absolute	scattering	power	of	the	
structures	inside	the	sample	that	reveals	additional	information	[14,	15].	In	detail,	the	
experimental	scattering	intensity	I(Q)	is	connected	to	the	macroscopic	differential	
scattering	cross	section	dΣ/dΩ(Q)	as	follows:		
	

𝐼 𝑄 = 𝐼! ∙ 𝐴 ∙ 𝜀 ∙ 𝑑 ∙ 𝑇! ∙ ΔΩ
𝑑Σ
𝑑Ω 𝑄 + 𝐵bckgr 	

	 (4)	
	
For	an	experiment,	one	needs	to	determine	the	incident	intensity	at	the	sample	I0,	the	
irradiated	area	of	the	sample	A,	the	detector	efficiency	ε,	the	sample	thickness	d,	the	
transmission	of	the	sample	Tr,	and	the	solid	angle	ΔΩ,	to	which	the	experimental	
intensity	refers.	Often,	there	is	a	parasitic	background	intensity	Bbckgr,	which	usually	is	
subtracted	from	the	signal	for	further	analysis.	The	incident	intensity	is	usually	
indirectly	determined	through	a	secondary	standard,	the	scattering	of	which	is	
measured	under	the	same	conditions	as	the	sample	such	that	some	dependencies	cancel	
out	(I0Aε).	The	resulting	macroscopic	cross	section	dΣ/dΩ(Q)	is	then	an	instrument-
independent	information,	that	for	instance	tells	about	the	concentration	of	a	solute	in	
solution.	Further	details	are	discussed	in	section	10.4.	
	
10.3.2	The	Born	approximation	
	
The	approximation	of	Born	leads	to	a	theoretical	connection	between	the	sample	
structure	and	the	macroscopic	cross	section.	While	there	are	several	simplifications	
behind,	the	most	important	prerequisite	for	using	the	Born	approximation	is	the	
condition	that	the	scattering	is	weak	[13,	14,	15].	This	means,	that	only	up	to	ca.	10%	of	
the	scattered	intensity	may	contribute	to	the	macroscopic	cross	section	dΣ/dΩ(Q),	often	
excluding	the	background	intensity.	Then,	the	macroscopic	cross	section	reads:	
	

𝑑Σ
𝑑Ω 𝑄 =

1
𝑉 𝑏!∙exp 𝑖𝑸 ∙ 𝒓!

!

!

	

	 (5)	
	
At	this	point,	dΣ/dΩ(Q)	is	connected	to	all	single	atoms	of	index	j	with	their	specific	
scattering	length	bj,	and	individual	complex	phases	arising	from	their	position	rj	(here	



we	refer	to	vectors	Q	and	rj	again).	This	atomistic	view	is	important	for	structures	on	the	
2-3Å	length	scale,	i.e.	𝑄 ≥ 2Å!!	[26]	(see	Figure	2).	There	are	still	wide	or	medium	angle	
scattering	experiments	aiming	at	the	10-20Å	length	scale,	i.e.	𝑄 ≥ 0.3Å!!,	where	another	
view	on	the	structures	applies:	When	leaving	the	atomistic	scale	towards	larger	length	
scales,	the	individual	atom	is	not	important	anymore,	and	the	chemical	formulae	of	
whole	molecules	or	larger	subunits	are	more	essential.	This	is	also	the	range	of	small	
angle	scattering	experiments	(𝑄 ≤ 0.3Å!!).	The	macroscopic	cross	section	reads	then:	
	

𝑑Σ
𝑑Ω 𝑄 =

1
𝑉 𝑑!𝑟  𝜚(𝒓) ∙ exp(𝑖𝑸𝒓)

!

!

	

	 (6)	
	
Essentially,	the	individual	scattering	length	bj	is	replaced	by	a	scattering	length	density	
ρ(r),	and	the	sum	is	exchanged	by	an	integral.	As	explained	before,	now	whole	molecules	
or	larger	subunits	describe	a	field	of	the	scattering	length	density:	
	

𝜌! =
1
𝑉!

𝑏!"
!

	

	 (7)	
	
where	the	sum	runs	over	all	atoms	of	number	j	in	the	molecule	k.	So,	here	several	atoms	
indexed	by	j	of	type	k	are	collectively	considered.	The	specific	volume	of	subunit	k	is	Vk.	
Practically,	for	solvents,	each	molecule	is	a	subunit,	and	the	specific	volume	is	calculated	
from	the	density.	For	polymers,	the	monomer	(or	more	precisely:	the	repeat	unit)	is	
usually	chosen	as	the	subunit.	For	clay	particles,	the	best	scattering	length	density	is	
based	on	the	overall	chemical	formula	of	the	silicate,	and	internal	lateral	
inhomogeneities	are	neglected.	One	might	observe	them	in	a	dedicated	contrast	
matching	measurement	[27]	where	then	residual	scattering	occurs.	The	detailed	
analysis	of	such	inhomogeneities	though	is	beyond	the	scope	of	this	manuscript.	
	

		
Figure	2:	A	WAXS	experiment	on	MMT	clay	dispersed	in	water.	One	observes	peaks	in	
the	classical	WAXS	range	Q	=	1.4,	2.0	and	3.0Å-1	for	atomistic	structures,	but	also	at	
intermediate	angles	Q	=	0.4Å-1	for	the	stacking	of	several	platelets.	From	Ref.	[27].	
	
	
10.4	The	scattering	of	simple	particles	



	
The	power	of	neglecting	single	atoms	is	found	then,	when	simple	shapes	of	internal	
homogeneity	are	considered.	The	essential	equation	for	the	macroscopic	cross	section	is	
then	found	to	be	[14,	15)]:	
	

𝑑Σ
𝑑Ω 𝑄 = (Δ𝜚)! ∙ 𝜙 ∙ 𝑉particle ∙ 𝐹!(𝑄)	

	 (8)	
	
The	important	prefactors	are	the	contrast	arising	from	the	scattering	length	density	
difference	Δ𝜚 = 𝜚! − 𝜚!	of	the	colloids	and	the	surrounding	matrix	(be	it	solvent	or	
polymer),	the	concentration	of	the	colloids	ϕ,	and	the	volume	of	a	single	colloidal	
particle	Vparticle.	The	only	Q-dependence	lies	in	the	form	amplitude	F(Q),	the	square	of	
which	is	called	form	factor.	The	low	Q	limit	of	the	form	amplitude	is	1,	and	so	a	
calibrated	scattering	experiment	allows	for	crosschecking	of	the	sheer	particle	volume	
with	the	shape	observed	in	F(Q).	Another	crosscheck	might	aim	at	the	concentration.	
	
While	the	major	part	of	this	manuscript	aims	at	platelets,	the	simplest	colloidal	structure	
is	a	sphere.	For	the	form	amplitude	one	obtains	the	simple	analytical	formula	[28]:	
	

𝐹 𝑄 = 3 ∙
sin 𝑄𝑅 − (𝑄𝑅) cos(𝑄𝑅)

(𝑄𝑅)! 	

	 (9)	
	
This	dependence	is	displayed	in	Figure	3	on	a	double	logarithmic	scale.	While	the	red	
curve	indicates	the	original	formula	with	heavy	oscillations	(called	fringes)	at	larger	
scattering	vectors,	the	blue	curve	indicates	a	practical	measurement	with	a	certain	
distribution	of	radii	R	and/or	finite	instrumental	resolution	(see	also	chapter	10.9).	In	
both	cases	we	have	a	Guinier	range	at	lowest	𝑄 < 0.02Å!!,	and	a	Porod	range	at	higher	
𝑄 > 0.07Å!!.	The	distribution	of	length	scales,	may	it	arise	from	R	or	Q,	smears	the	
fringes	over	a	certain	range,	and	accordingly	more	or	less	fringes	remain	to	be	seen.	The	
Guinier	scattering	is	often	expressed	in	a	simplified	way,	that	holds	for	small	Q,	and	it	
reads	[14,	15,	29]:	
	

𝑑Σ
𝑑Ω 𝑄 = (Δ𝜚)! ∙ 𝜙 ∙ 𝑉particle ∙ exp −

𝑅!!𝑄!

3 	

	 (10)	
	
While	the	prefactors	remain	as	for	the	original	formula	with	the	volume	of	a	single	
spherical	colloid	𝑉particle = 4𝜋𝑅!/3,	the	form	factor	is	approximated	by	a	simple	
Gaussian.	This	expression	introduces	a	new	aspect	of	the	colloidal	size,	namely	the	
radius	of	gyration	Rg.	It	is	connected	to	the	second	moment	of	the	mass	distribution	of	
the	colloid	(similar	to	the	moment	of	inertia).	For	spherical	homogenous	colloids	the	
relation	𝑅! = 3/5 ∙ 𝑅	holds.	Applying	the	Guinier	expression	to	any	other	scattering	
curve	at	small	Q	will	still	provide	a	radius	of	gyration,	but	the	meaning	has	to	be	
analyzed	in	context	with	the	colloidal	shape	and	volume.	
	
The	first	minimum	of	the	scattering	curve	is	often	visible	for	spherical	colloids,	because	
the	distribution	of	length	scales	usually	is	good	enough,	and	the	radius	of	the	colloid	can	



be	determined	according	to	𝑄min = 4.493/𝑅.	This	formula	is	another	example	reciprocal	
space	relations	(see	also	eq.	3),	where	the	prefactor	has	changed	slightly	from	the	
original	value	2π.	For	consistency,	the	radius	determined	by	the	first	minimum	can	be	
crosschecked	with	the	radius	of	gyration,	and	the	colloidal	volume.	If	there	are	strong	
inconsistencies,	the	shape	might	be	non-spherical,	and	other	models	have	to	be	
considered.	
	

	
	
Figure	3:	The	form	factor	of	a	spherical	colloid	with	the	radius	100Å	(red	line).	The	
Gunier	range	is	found	at	small	Q,	while	the	Porod	range	is	at	high	Q.	For	polydisperse	
spheres	and/or	finite	instrumental	resolution,	the	blue	line	is	obtained	with	the	linear	
asymptote	in	the	double	logarithmic	scale.		
	
The	Porod	formula	is	usually	expressed	for	the	Q-range	where	the	fringes	have	been	
smeared	out	to	yield	a	straight	line	in	the	double	logarithmic	plot.	It	simply	reads:	
	

𝑑Σ
𝑑Ω 𝑄 = 𝑃 ∙ 𝑄!!	

	 (11)	
	
The	Porod	constant	𝑃 = 2𝜋 Δ𝜚 !𝑆tot/𝑉tot	is	connected	to	the	characteristic	surface	Stot,	
and	reads	for	spherical	colloids	𝑃 = 6𝜋 Δ𝜚 !𝜙/𝑅.	Again,	this	gives	rise	to	crosschecks	
with	the	radii	determined	at	different	Q-ranges.	Independent	from	the	spherical	model	
that	we	discuss	here,	the	connection	of	the	Porod	constant	with	the	characteristic	
surface	holds	for	other	structures	[14,	29].	The	prerequisite	of	applying	this	scattering	
law	is	the	sharp	transition	of	scattering	length	densities	between	clearly	separated	
domain	structures,	i.e.	volumes.	We	will	see	in	the	following	that	other	scattering	
(Porod)	laws	may	occur	for	different	structures.	
	
The	next	stage	of	complexity	in	the	scattering	occurs	for	platelets.	Often,	the	structure	is	
approximated	by	flat	cylinders.	The	general	form	amplitude	for	a	cylinder	with	the	main	
axis	along	the	z-axis	reads	[28]:	
	



𝐹 𝑄,𝜑,𝜗 =
sin(𝑄𝐻 cos𝜗)
𝑄𝐻 cos𝜗 ∙ 2

𝐽!(𝑄𝑅 sin𝜗)
𝑄𝑅 sin𝜗 	

	 (12)	
	
The	polar	angle	between	Q	and	the	z-axis	is	ϑ.	The	two	factors	arise	from	the	two	
different	structures	in	different	directions:	the	finite	length	of	the	cylinder	d	with	the	
height	parameter	H	=	d/2,	and	the	circular	structure	with	the	radius	R.	There	is	no	
dependence	on	the	azimuthal	angle	φ	due	to	the	cylinder	symmetry.	For	platelets,	the	
relation	𝑅 ≫ 𝐻	holds.	For	oriented	platelets,	the	scattering	would	be	anisotropic,	and	
the	discussion	would	stop	here.	But	in	practice,	the	platelets	do	often	not	have	a	
preferred	orientation,	and	the	orientational	averaging	needs	to	be	applied	to	the	model,	
according	to:	
	

𝐹! 𝑄 =
1
2𝜋 𝑑𝜑

!!

!
𝑑𝜗  𝐹! 𝑄,𝜑,𝜗 sin𝜗

!
!

!
	

	 (13)	
	
When	the	original	form	amplitude	is	independent	of	the	azimuthal	angle	φ,	its	integral	
cancels	with	the	prefactor.	The	averaging	over	the	polar	angle	remains	for	platelets,	and	
practically	is	done	numerically	when	this	model	is	applied	to	scattering	curves.	Only	
when	the	separation	of	length	scales	applies	(𝑅 ≫ 𝐻),	a	further	simplification	is	found:	
	

𝐹! 𝑄 =
2

𝑄!𝑅! ∙ 1−
𝐽!(2𝑄𝑅)
𝑄𝑅 ∙

sin! (𝑄𝐻)
𝑄!𝐻! 	

	 (14)	
	
We	identify	the	first	two	factors	with	the	orientationally	averaged	circular	structure,	
while	the	third	factor	arises	from	the	finite	thickness	without	changes.	The	concept	of	
unchanged	scattering	functions	for	the	small	length	scales	is	also	found	for	other	
models,	for	instance	for	chain	structures	with	finite	cross	section	[30].	
	
Graphically,	the	simplified	scattering	function	and	the	original	view	with	explicit	
orientational	averaging	cannot	be	distinguished	as	seen	in	Figure	4	(for	R	=	600Å	and	H	
=	5Å).	We	identify	four	different	Q-ranges:	The	Guinier	range	(𝑄 < 0.003Å!!)	for	the	
overall	particle	is	connected	to	the	particle	volume	𝑉particle = 2𝜋𝑅!𝐻	and	the	radius	of	
gyration	𝑅! = 𝑅!/2+ 𝐻!/3	according	to	the	original	formula	of	eq.	10.	The	first	power	
law	region	(0.008Å!! < 𝑄 < 0.2Å!!)	describes	the	shape	of	an	infinitely	thin	platelet	
with	typical	thickness:	
	

𝑑Σ
𝑑Ω 𝑄 = 4𝜋 ∙ (Δ𝜚)! ∙ 𝜙 ∙ 

𝐻
𝑄!	

	 (15)	
	
This	scattering	law	is	connected	to	the	fractal	structure	of	a	thin	surface	in	a	3d	volume.	
The	next	region	is	the	Guinier	region	(0.2Å!! < 𝑄 < 0.5Å!!)	that	observes	the	finite	
thickness	of	the	platelet.	This	scattering	law	is	considerably	different	from	the	original	
Guinier	expression	(eq.	10),	because	the	surface	and	the	finite	thickness	appear	at	the	
same	time.	
	



𝑑Σ
𝑑Ω 𝑄 = 4𝜋 ∙ (Δ𝜚)! ∙ 𝜙 ∙ 

𝐻
𝑄! ∙ exp (−

1
3𝑄

!𝐻!)	

	 (16)	
	
At	highest	𝑄 > 1Å!!	the	volume	property	of	the	platelet	appears.	So	the	considered	
length	scales	are	such	small,	that	a	small	portion	of	the	interface	between	the	colloid	and	
the	matrix	is	not	correlated	anymore	to	other	interface	portions.	One	simply	finds	the	
Porod	constant:	
	

𝑃 = 2𝜋 Δ𝜚 !𝜙 ∙
1
𝐻 +

2
𝑅 ≈ 2𝜋 Δ𝜚 !𝜙/𝐻	

	 (17)	
	
At	some	point	in	this	Q-range,	the	atomistic	structures	would	also	superimpose,	and	the	
idealized	platelet	structure	would	not	be	observed	as	pure	as	discussed	here.	
	

	
	
Figure	4:	The	form	factor	of	a	platelet	with	radius	R	=	600Å	and	a	thickness	of	2H	=	10Å.	
One	can	identify	several	Q-ranges	that	express	the	fractal	structure	of	a	platelet	as	
described	in	the	text.	
	
	
10.5	More	complicated,	but	less	specific	structures		
	
We	have	seen	in	the	previous	chapter	that	often	a	separation	of	length	scales	occurs.	The	
scattering	of	such	structures	then	results	in	well-separated	Q-ranges,	where	simple	
power-laws	such	as	𝑄!!! 	appear.	The	exponent	Df	is	the	fractal	dimension	of	the	
structure,	and	can	take	values	limited	between	1	and	6	(typically	Df	≤	4.5).	For	the	direct	
observation	of	mass	fractals,	Df	is	the	dimensionality	of	the	fractal	structure	(1	for	rods,	
2	for	surfaces,	3	for	a	house	of	cards),	while	Df	=	2d	−	D	holds	for	surface	fractals	with	the	
dimensionality	D	in	d	dimensions.	So	the	classical	Porod	exponent	of	4	relates	to	a	3-
dimensional	structure	(d	=	3),	the	surface	(D	=	2)	of	which	is	observed.	Further	



roughness	would	even	result	in	higher	exponents,	but	if	the	surface	is	completely	
diffuse,	the	power	law	disappears,	and	a	bare	Gaussian	decay	with	a	roughness	
parameter	σ	remains	only.	
	
More	precisely,	we	have	seen	that	the	separation	of	length	scales	results	in	an	alternating	
sequence	of	Guinier	and	power	law	scattering.	For	many	structures	with	a	wider	
distribution	of	length	scales	(polydispersity),	there	are	no	more	fringes	in	between	the	
Guinier	range	and	the	power	law,	and	the	curves	look	quite	smooth	on	a	double	
logarithmic	plot.	Here	comes	the	idea	of	Beaucage	into	play	[31].	For	a	single	size	with	a	
single	fractal	structure,	the	following	–	rather	heuristic	–	scattering	formula	is	obtained:	
	

𝑑Σ
𝑑Ω 𝑄 = 𝐺! exp −

1
3𝑄

!𝑅!! + 𝐵!
erf!(𝑄𝑅!/ 6)

𝑅!𝑄

!!

	

	 (18)	
	
The	prefactor	G1,	as	we	have	learned,	is	connected	to	several	magnitudes	(namely	
contrast,	concentration	and	particle	volume,	see	eq.	8),	and	the	radius	of	gyration	Rg	can	
be	connected	to	the	particle	size,	if	its	geometry	is	known.	The	prefactor	B1	might	be	
connected	to	G1,	if	a	Benoît	mass	fractal	is	described,	according	to	𝐵! = 𝐺!Γ 𝐷!/2 𝐷!;	
otherwise	B1	stays	slightly	below	that	value.	Empirically,	the	argument	of	the	error	
function	erf(x)	usually	is	multiplied	by	a	factor	of	1.06.	The	formula	was	then	expanded	
to	several	stages	of	fractal	structures.	For	those	hierarchical	structures	one	finds:	
	

𝑑Σ
𝑑Ω 𝑄 = 𝐺! exp −

1
3𝑄

!𝑅!! + 𝐵!
erf!(𝑄𝑅!/ 6)

𝑅!𝑄

!!

+ 𝐺! exp −
1
3𝑄

!𝑅!!

+ 𝐵!
erf!(𝑄𝑅!/ 6)

𝑅!𝑄

!!

+ 𝐺! ⋯	

	 (19)	
	
The	two	square	brackets	and	the	indices	i	indicate	the	different	stages	of	fractal	
structures,	ranging	with	i	from	large	to	smaller	structures.	By	employing	more	brackets	
and	more	indices	i,	the	formula	can	be	naturally	expanded	to	an	arbitrary	number	of	
fractal	stages.	Compared	to	our	model	platelet,	the	Beaucage	fractal	description	allows	
for	more	parameters	to	be	adjusted.	So,	by	applying	this	model,	one	might	be	left	with	
uncertainties	in	the	interpretation	which	exact	structure	is	connected	to	which	length	
scale.	This	Beaucage	model	fitting	basically	corresponds	to	a	ruler	based	analysis	in	a	
log-log-plot	of	the	scattering	curve,	where	the	intersections	are	connected	to	the	typical	
length	scales	(here	called	Ri).	
	



	
Figure	5:	Scattering	of	magnetite	particles	in	different	environments:	(top)	a	
gelatin/chitin	composite,	and	(bottom)	a	pure	gelatin	gel.	The	largest	length	scales	(Rg)	
are	µm	and	not	mm	as	indicated	at	lowest	Q.	Taken	from	Ref.	[32].	
	
Now,	we	discuss	a	system	with	chitin	platelets	that	are	embedded	in	a	gelatin/water	gel	
[32].	The	system	mimics	natural	nacre	that	can	also	be	obtained	by	using	clay	instead	of	
chitin	[33].	The	platelet	concentration	is	such	high,	that	locally	all	platelets	are	aligned	in	
parallel.	Rendering	a	certain	heavy	water	content,	the	main	focus	of	the	experiment	was	
on	the	magnetite	particles	that	are	captured	in	between	the	platelets	(Figure	5).	For	
comparison	the	same	particles	were	studied	in	the	gelatin	gel	without	chitin.	The	
isolated	magnetite	particles	are	observed	a	high	𝑄 > 0.2nm!!	with	a	power	law	of	Q−3	
that	takes	account	for	the	interstitial	between	the	touching	particles.	At	intermediate	Q	
(0.01nm!! > 𝑄 > 0.2nm!!)	the	fractal	structure	of	the	magnetite	chains	becomes	
visible.	Within	the	chitin	platelets,	the	chains	are	stretched	and	rod-like	(with	an	
exponent	1),	while	in	the	pure	gelatin	gel,	the	chains	are	polymer-	or	coil-like	(with	an	
exponent	2,	as	we	will	see	in	chapter	10.7).	At	very	low	𝑄 < 0.005nm!!,	the	branching	
of	the	different	chains	leads	to	network	with	a	finite	correlation	length	ξ,	that	gives	rise	
to	a	Guinier	scattering	~exp (−𝜉!𝑄!)	with	𝜉 = 𝑅!/ 3.	
	
10.6	The	Role	of	the	Structure	Factor	
	
When	we	discussed	the	scattering	of	simple	particles,	we	assumed	that	they	appeared	
uncorrelated	in	the	sample	volume.	Only	then,	the	scattering	intensity	of	individual	
particles	superimposes	independently	(as	seen	by	the	factor	ϕ	in	eq.	8).	For	
concentrated	or	attractive	particles,	the	correlation	between	the	different	particles	has	
to	be	taken	into	account,	because	certain	distances	appear	to	be	more	preferred.	This	
gives	rise	to	an	additional	factor,	the	structure	factor	S(Q),	and	the	original	formula	8	
transfers	to	[14,	15,	29]:	
	

𝑑Σ
𝑑Ω 𝑄 = (Δ𝜚)! ∙ 𝜙 ∙ 𝑉particle ∙ 𝑆(𝑄) ∙ 𝐹!(𝑄)	

	 (20)	
	



The	theory	of	the	structure	factor	might	be	seen	as	complicated.	So	we	will	come	to	
some	simple	expressions	after	we	have	summarized	the	essential	ingredients.	The	
simplest	theoretical	approach	to	the	structure	factor	is	obtained	by	discussing	the	pair	
correlation	function	g(r).	Except	for	some	peculiarities	about	Fourier	transformations	of	
constants,	the	structure	factor	S(Q)	is	basically	the	Fourier	transformation	of	g(r):	
	

𝑆 𝑄 = 1+ 𝜙 𝑑!𝑟 𝑔 𝒓 − 1
!

 exp (𝑖𝑸𝒓)	

	 (21)	
	
We	see	the	subtraction	and	addition	of	1	at	two	places,	which	takes	care	of	unwanted	
divergences	(and	the	self-correlation).	Otherwise	a	simple	Fourier	transformation	
remains.	The	pair	correlation	function	is	simply	defined	by	probabilities,	and	reads:		
	

𝑔 𝒓! − 𝒓! =
𝑃(𝒓!, 𝒓!)

𝑃(𝒓!) ∙ 𝑃(𝒓!)
	

	 (22)	
	
with	the	probability	of	finding	any	single	particle	𝑃 𝒓! = 𝜙,	independent	of	the	position	
r1,	and	the	probability	P(r1,r2)	of	finding	two	particles	at	certain	two	positions.	The	pair	
correlation	function	does	only	depend	on	the	relative	position	r1−r2	between	two	
particles.	For	isotropic	particles,	the	correlation	is	also	isotropic,	while	for	platelets	we	
have	to	assume	a	preferred	direction,	as	we	will	see	below.	
	
In	a	simple	way,	one	can	derive	a	structure	factor	for	hard	spheres	that	simply	cannot	
overlap.	One	can	derive	the	following:	
	

𝑆 𝑄 = 1− 𝜙!! ∙ 𝐹sphere(𝑄, 2𝑅) ≈ 1+ 𝜙!! ∙ 𝐹sphere(𝑄, 2𝑅)
!!	

	 (23)	
	
In	the	first	expression,	the	form	amplitude	of	a	sphere	appears	(eq.	9)	with	double	the	
radius	and	a	concentration	according	to	double	sized	spheres,	i.e.	ϕ2R	=	23	ϕ.	This	takes	
care	of	the	minimum	distance	between	two	spheres	of	radius	R.	The	second	expression	
is	highly	similar	to	the	first	one	(same	leading	order	for	small	ϕ),	and	results	from	a	
simple	Ornstein-Zernike	approach.	A	more	detailed	Ornstein-Zernike	approach	exists	
for	hard	spheres	with	a	few	more	terms	[34]	–	see	also	Appendix	10.11.	
	
10.6.1	Structure	factors	for	clay	systems	
	
The	stacking	of	several	clay	platelets	gives	rise	to	at	least	one	peak:	The	1st	order	peak	is	
directly	connected	to	the	spacing	d	of	the	platelets	according	to	𝑑 = 2𝜋𝑄max!! 	(see	also	eq.	
3).		A	simple	experiment	is	described	for	smectite	in	water	that	was	slowly	heated	from	-
70°C	to	room	temperature	[34]	(Figure	6).	One	can	see	that,	with	increasing	the	
temperature,	the	lamellar	spacing	increases	from	15	to	ca.	100Å.	As	long	as	one	focuses	
on	the	first	order	peak	position,	one	could	stop	here,	but	more	details	lie	in	(a)	the	small	
angle	scattering,	where	whole	stacks	are	observed,	(b)	in	the	peak	width,	and	(c)	in	
relative	widths	of	higher	order	peaks.	In	the	following,	we	will	give	several	approaches	
that	focus	on	the	different	aspects.	
	



	
Figure	6:	SAXS	patterns	of	smectite	in	water	that	is	slowly	heated	from	-10°C	to	room	
temperature.	Gradual	swelling	occurs	with	elevated	temperatures.	Note	that	the	SAXS	
scattering	vector	s	is	related	in	the	following	2𝜋𝑠 ≡ 𝑄,	and	d	=	s-1.	Graph	modified	from	
Ref.	[35].	
	
	
For	stacks	of	platelets,	ideally	with	their	centers	on	the	same	normal	line,	one	would	
obtain	the	following	stack	form	factor:	
	

𝐹! 𝑄 = 𝑑𝜗 𝑆(𝑄,𝜗) ∙ 𝐹! 𝑄,𝜗 sin𝜗
!
!

!
	

	 (24)	
	
We	can	see	here	an	internal	structure	factor	𝑆(𝑄,𝜗),	that	describes	only	the	correlations	
of	single	platelets	along	the	z-axis.	The	platelet	form	factor	𝐹! 𝑄,𝜗 	refers	to	eq.	12.	
With	this	concept	one	would	describe	whole	stacks	that	are	embedded	further	in	a	
matrix.	The	simplest	internal	structure	factor	is	obtained,	when	all	stacks	have	an	
identical	number	of	platelets	N	[27]:	
	

𝑆 𝑐 =
sin!(𝑐𝑁)
sin!(𝑐) 	

	 (25)	
	
with	the	argument	𝑐 = (𝑄𝑑/2) cos𝜗.	For	a	distribution	of	the	platelet	number	n	with	the	
probability	being	constant	for	all	n	and	a	maximum	nmax	=	N,	one	obtains	[27]:	
	

𝑆 𝑐 =
2𝑁 − sin 2𝑐𝑁 + 𝑐 /sin (𝑐)+ 1

4𝑁 sin!(𝑐) 	

	 (26)	
	
For	a	Poisson	distribution	of	the	platelet	number	n	with	the	mean	value	<n>	=	λ,	one	
obtains	[27]:	
	



𝑆 𝑐 =
1− cos (𝜆 ∙ sin 2𝑐 ) ∙ exp (−2𝜆 sin! 𝑐)

2 sin!(𝑐) 	

	 (27)	
	
All	of	these	structure	factors	display	identical	Bragg	peaks	at	Q	=	0,	Qmax,	2Qmax,	3Qmax,	…	
as	seen	in	Figure	7.	The	most	interesting	detail	is	the	shape	of	the	small	angle	scattering	
at	small	𝑄 < 0.1Å!!,	where	the	statistics	of	the	n-distribution	really	matters	(see	Figure	
8).	For	higher	Q,	the	resolution	of	neutron	scattering	experiments	is	usually	such	relaxed	
that	peak	shapes	are	not	that	well	distinguished	experimentally.	The	form	factor	that	
still	has	to	be	considered	is	responsible	for	the	decay	of	the	Bragg	peaks	at	higher	Q	that	
makes	higher	order	peaks	nearly	invisible	for	SANS.	So,	wide	and	medium	angle	x-ray	
scattering	experiments	are	usually	the	better	choice	for	observing	higher	order	Bragg	
peaks	and	peak	widths.	After	we	have	seen	the	theories	for	identical	peak	shapes	of	all	
orders,	a	few	examples	should	be	given	for	different	peak	shapes	at	different	orders.	
	

	
Figure	7:	Structure	factors	for	stacks	with	different	statistics:	(red)	fixed	number	N	=	5	
of	platelets	in	stack,	(blue)	same	probability	for	n	=	1..5	platelets	in	stack,	and	(green)	
Poisson	distribution	of	n	with	mean	value	λ	=	5.	The	spacing	is	20Å.	Note	the	log-log	
scale	in	the	left	section,	while	the	scale	is	linear	else.	
	

	



Figure	8:	(left)	Typical	small	angle	neutron	scattering	pattern	of	a	MMT	clay	in	water	
dispersion.	Even	though	the	scattering	pattern	looks	quite	featureless,	isolated	platelets	
and	a	Poisson	distribution	for	the	platelet	number	in	a	stack	had	to	be	assumed	(right).	
From	Ref.	[27].	
	
For	regular	repetitions	of	identical	building	blocks,	the	theory	of	crystals	has	been	
developed	best	[13].	From	the	theory	of	crystals	the	following	picture	has	been	
developed:	For	the	first	three	structure	factors,	we	have	assumed	no	uncertainty	of	the	
repeat	distance.	This	results	in	equally	shaped	Bragg	peaks	at	all	orders.	In	this	case,	
only	the	finite	size	∅	of	the	crystallite	determines	the	peak	width	of	all	peaks	through	a	
correlation	length	ξ	~	∅.	So	the	neighborhood	of	platelets	remains	well	defined.	The	
second	kind	of	uncertainty	(see	also	[14])	is	introduced,	when	the	probability	becomes	
wider	and	wider	when	considering	neighbors	at	larger	distances.	This	means,	that	each	
particle	only	refers	to	its	immediate	neighbor,	which	results	in	a	loss	of	wide-range	
order.	This	scenario	describes	a	paracrystal.	
	
Kratky	and	Porod	[36,	37,	38]	introduced	a	Gaussian	distribution	for	next-neighbor	
correlations,	which	results	in	wider	Gaussian	distributions	over	longer	distances	[2].	
The	expression	for	this	structure	factor	reads:	
	

𝑆 𝑐 = 1+
2
𝑁 (𝑁 − 𝑘)cos (2𝑘𝑐)exp −2𝑘

𝜎!

𝑑! 𝑐
!

!

!!!

	

	 (28)	
	
We	see,	that	the	total	number	of	platelets	is	limited	to	N.	The	integer	k	describes	the	
index	difference	of	the	platelets,	which	appears	in	the	Gaussian	factor.	In	reciprocal	
space	the	corresponding	Gaussian	gets	narrower	–	contrarily	to	real	space.		
	
While	in	the	abovementioned	structure	factor	the	mean	distance	is	fixed,	and,	therefore,	
a	weakly	paracrystalline	model,	another	approach	for	intercalated	polymer/clay	
nanocomposites	can	be	made:	Now	by	d	the	minimum	distance	is	described,	and	a	
simply	exponential	decaying	potential	with	a	decay	length	L	describes	the	next	neighbor	
interactions.	Now,	the	potential	allows	for	detachments	and	would	be	called	“strongly	
paracrystalline”.	The	structure	factor	reads:	
	

𝑆 𝑐 =
4 𝐿𝑐

𝑑
!

2+ 4 𝐿𝑐
𝑑

!
− 2 cos2𝑐 + 4 𝐿𝑐𝑑 sin 2𝑐

	

	 (29)	
	
Both	structure	factors	of	the	two	paracrystalline	models	are	compared	in	Figure	9.	While	
the	first	model	loses	the	higher	order	peaks	quite	quickly,	the	second	model	keeps	
higher	order	peaks	well.	This	corresponds	to	the	short	distance	correlations	which	are	
better	in	the	second	case.	The	first	model	still	provides	a	description	of	small	angle	
scattering	at	the	zero	order	peak,	while	the	second	model	leads	to	such	a	homogenous	
clay	distribution	that	small	angles	scattering	is	predicted	to	be	absent.	This	fact	is	a	clear	
inconsistency	of	the	second	model,	which	does	not	apply	in	reality.	The	origin	is	the	



assumption	of	low	platelet	concentrations	that	in	reality	also	give	rise	to	random	
orientations	and	therefore	well	distinguished	stacks	that	do	scatter	at	small	angles.		
	
From	the	first	order	peak	width	of	the	second	model,	the	mean	number	of	platelets	in	a	
stack	can	be	calculated	when	comparing	to	eq.	25.	In	the	limit	of	large	platelet	numbers	
or	small	L	one	would	obtain:	
	

𝑁 ≈ 6
𝜉!

𝑑! + 1 ≈
3
𝜋! ∙

𝑑!

𝐿! + 1 	

	 (30)	
	
The	equilibrium	total	spacing	δ	refers	to	the	first	maximum	of	the	structure	factor,	and	is	
depicted	in	Figure	9b.	The	distance	distribution	function	can	be	motivated	by	the	
minimum	distance	d	that	is	at	least	the	platelet	thickness,	and	the	parameter	L	that	can	
be	explained	through	a	chemical	potential	μ:	If	the	polymer	deformation	is	assumed	to	
be	in	the	normal	direction,	the	potential	would	read	μ	=	kBT	(1-Δ2/Rg2)	≈	kBT.	For	strong	
deformations,	the	detail	about	the	exact	deformation	is	lost.	In	the	comparisons	with	
literature	data	below,	the	actual	chemical	potential	seems	to	be	smaller	than	estimated	
here.	For	conceptual	reasons	we	leave	the	explanation	as	it	is.	The	number	of	polymers	
between	two	platelets	is	given	by	n	=	πR2Δ	/	Vm,	where	R	is	the	platelet	radius,	and	Δ	the	
spacing	between	the	platelets.	Now,	the	distribution	function	for	the	spacing	would	read	
Ψ(Δ)	~	exp(−(μ/kBT)πR2Δ/Vm),	and	so	
	

𝐿 =
𝑉!

𝜋𝑅!𝜇/𝑘!𝑇
	

	 (31)	
	
For	the	stacking	number	<N>	one	would	expect	a	decaying	dependence	with	the	molar	
polymer	volume	Vm	[39],	while	the	spacing	would	increase	[40].	The	two	literature	
examples	[39,	40]	are	only	semi-quantitatively	representing	the	described	dependencies	
here,	but	the	observed	trends	are	correct.	The	presented	model	is	the	simplest	attempt	
to	explain	the	connections	between	different	parameters	of	intercalated	polymer/clay	
systems	for	non-grafted	polymers	at	low	particle	concentrations.	
	

												 	



Figure	9:	(left)	Comparison	of	the	structure	factors	of	paracrystalline	models	(d	=	20Å).	
The	red	curve	corresponds	to	the	Kratky-Porod	model	(N	=	5)	with	Gaussian	
distributions	of	the	distortions	(σ	=	1Å),	while	the	second	model	assumes	an	exponential	
decay	(L	=	3.9Å	à	<N>	=	3)	of	the	next	neighbor	distance	distribution.	(right)	the	
spacing	of	the	second	model	as	a	function	of	the	scaled	L	parameter.	
	
Some	experimental	results	about	rubber	filled	clay	systems	are	depicted	in	Figure	10	
[41].	The	pure	clay	shows	sharp	peaks	that	weakly	decay	in	intensity,	which	indicates	
high	degree	of	order.	The	intercalated	systems	show	a	much	faster	decay	of	higher	order	
peaks	which	might	be	addressed	to	a	paracrystal	structure.	At	very	high	clay	contents	
the	spacing	seems	to	be	dominated	by	the	average	space	that	a	clay	sheet	has.	
	

			 	
Figure	10:	(left)	The	influence	of	rubber	intercalation	to	LDH	clay.	The	pure	clay	shows	
highly	ordered	stacks,	while	the	intercalated	system	has	clear	indications	for	disorder	
that	likely	is	a	paracrystal	structure.	(right)	The	influence	of	high	organo-clay	(M60)	
contents	on	styrene-butadiene	rubbers	(S-SBR)	in	units	of	phr	(per	hundred	rubber).	
The	high	clay	contents	seem	to	equally	distribute	such	that	the	spacing	reduces.	From	
Ref.	[41].	
	
The	focus	on	the	structure	factor	distracted	from	the	presence	of	the	form	factor.	For	
small	stacking	numbers	(i.e.	<N>	d	<<	R)	the	form	factor	is	present,	and	would	appear	as	
follows	due	to	the	separation	of	length	scales:	
	

𝐹! 𝑄 =
2

𝑄!𝑅! ∙ 1−
𝐽! 2𝑄𝑅
𝑄𝑅 ∙

sin! 𝑄𝐻
𝑄!𝐻! ∙ 𝑆(𝑐 = 𝑄𝑑/2)	

	 (32)	
	
Practically,	the	first	term	~Q-2	is	essential	in	the	WAXS	patterns,	and	the	single	platelet	
thickness	H	=	d/2	might	appear	as	well.	Note	that	for	pure	clay	the	stack	thickness	is	so	
high,	that	the	form	factor	can	be	assumed	to	be	constant.	Intermediate	stacking	numbers	
require	the	full	orientational	averaging	as	of	eq.	24.	
	
	
10.7	Polymer	Scattering	
	
Since	polymers	are	one	main	material	that	is	used	for	intercalation	and	exfoliation,	many	
studies	aim	at	the	chain	structure	of	polymers.	As	already	intuitively	clear,	the	chains	
can	be	rather	undisturbed	at	low	particle	concentrations	far	apart	from	the	platelets,	
and	strongly	deformed	in	the	intercalated	state	between	the	platelets.	Interestingly	for	



spherical	colloids,	most	of	the	polymers	stay	rather	unchanged	in	the	presence	of	the	
particles	–	even	at	higher	particle	concentrations	[42].	For	simplicity	and	clarity	we	start	
with	the	concepts	of	undeformed	chains,	and	then	end	at	deformed	intercalated	chains	
[14,	15].	
	
The	scattering	function	of	a	random	coil	for	a	chain	was	first	derived	by	Debye.	Using	the	
statistics	of	a	random	walk,	one	obtains	the	Debye	function:	
	

𝐹! 𝑄, 𝑓 =
2

𝑄!𝑅!!
∙ exp −𝑓 ∙ 𝑄!𝑅!! − 1+ 𝑓 ∙ 𝑄!𝑅!! 	

	 (33)	
	
For	later	expressions	we	introduced	a	segment	fraction	f	of	the	overall	chain.	For	simple	
homopolymers	we	set	f	=	1,	and	obtain	the	full	Q-dependence	of	the	scattering	in	the	
case	of	non-interacting	chains.	The	polymer	size	is	given	in	terms	of	the	radius	of	
gyration	Rg.	The	neglect	of	interactions	is	true	in	theta-solvents	[43]	and	nearly	true	in	
melts	of	polymers	with	different	hydrogen	isotope	labeling	[44].	The	theoretical	and	
experimental	dependencies	are	depicted	in	Figure	11.	The	Guinier	scattering	at	small	Q	
and	the	fractal	structure	of	coils	at	high	Q	can	be	analyzed	further	[45,	46],	but	would	
take	us	far	from	the	scope	of	this	manuscript.	For	the	absolute	scattering	of	non-
interacting	polymers	of	the	same	polymerization	degree	one	obtains	then:	
	

𝑑Σ
𝑑Ω 𝑄 = (Δ𝜚)! ∙ 𝜙 ∙ (1− 𝜙) ∙ 𝑉polymer ∙ 𝐹!(𝑄, 1)	

	 (34)	
	
We	have	already	seen	the	general	dependence	in	eq.	8,	but	now	the	labeled	polymer	
fraction	ϕ	can	be	high.	This	new	expression	results	from	the	random	phase	
approximation	(RPA)	that	describes	concentrated	systems	[15]	and	that	will	be	derived	
in	the	following.	Here,	we	mainly	restrict	ourselves	to	polymer	systems.	The	basis	of	the	
RPA		is	the	matrix	of	the	undisturbed	polymers.	In	the	case	of	well	distinguished	
homopolymers,	the	matrix	is	diagonal:		
	

	
Figure	11:	(left)	The	theoretical	Debye	function	in	a	linear	and	double-logarithmic	plot.	
(right)	The	experimental	scattering	of	a	homopolymer	melt	of	protonated	and	
deuterated	chains,	again	linear	and	double-logarithmic.		From	Refs.	[44,	46]	
	



	

𝑺! 𝑄 =
𝜙!𝑉!𝐹!! 0 0
0 ⋱ 0
0 0 𝜙!𝑉!𝐹!!

	

	 (35)	
	
In	the	case	of	diblock	copolymers	(i.e.	linear	chains	with	two	different	monomers,	block-
wise	distributed	along	the	chain),	off-diagonal	entries	appear	in	the	matrix.	In	the	case	of	
a	simple	diblock	copolymer	melt,	one	obtains	the	following	matrix	[47]:	
	

𝑺! 𝑄 = 𝜙𝑉
𝐹!(𝑄, 𝑓) !

!
𝐹! 𝑄, 1 − 𝐹! 𝑄, 𝑓 − 𝐹!(𝑄, 1 − 𝑓)

!
!
𝐹! 𝑄, 1 − 𝐹! 𝑄, 𝑓 − 𝐹!(𝑄, 1 − 𝑓) 𝐹!(𝑄, 1 − 𝑓)

	

	 (36)	
	
From	this	concept,	it	is	possible	to	build	an	N×N	matrix	for	any	kind	of	polymers	with	N	
kinds	of	well	separated	polymeric	blocks.	If	a	one-phase	system	is	assumed,	the	entries	
for	the	same	kind	of	monomers	can	be	compressed	in	terms	of	a	simple	addition	(i.e.	
𝑆!!eff = 𝑆!!!∈{!} 	and	𝑆!"eff = 𝑆!"!∈ ! ,!∈ ! ,!!! 	for	k	>	l	and	correspondingly	for	k	<	l).	All	of	
this	yielded	the	correlation	matrix	of	unperturbed	chains.	For	interacting	polymers,	a	
second	matrix	describes	the	monomer-monomer	interactions:	
	

𝑽 =

𝑣!! 𝑣!" ⋯ 𝑣!!
𝑣!" 𝑣!! ⋯ 𝑣!!
⋮ ⋮ ⋱ ⋮
𝑣!! 𝑣!! ⋯ 𝑣!!

=

𝑣 𝑣 − 𝜒!" ⋯ 𝑣 − 𝜒!!
𝑣 − 𝜒!" 𝑣 ⋯ 𝑣 − 𝜒!!

⋮ ⋮ ⋱ ⋮
𝑣 − 𝜒!! 𝑣 − 𝜒!! ⋯ 𝑣

	

	 (37)	
	
The	first	expression	leaves	much	space	for	specific	interactions,	but	usually	the	
parameters	can	be	reduced	by	introducing	a	strong	repulsive	parameter	v	that	is	
basically	the	same	for	all	monomers,	and	a	specific	exchange	interaction	χij	that	
describes	the	energetic	change	of	i-i	and	j-j	contacts	by	i-j	contacts.	Practically,	for	most	
polymer	systems	the	interactions	are	point-like,	and	therefore	Q-independent.	The	
central	correlation	function	including	interactions	is	then	expressed	by	
	

𝑺 = 𝑺!!! + 𝑽 !!	
	 (38)	
	
This	expression	is	still	a	matrix	that	cannot	simply	be	compared	to	a	simple	scattering	
experiment.	The	key	is	the	scattering	contrasts,	that	have	to	be	considered	for	each	
monomeric	species:	
	

𝝔 =
𝜚! − 𝜚!

⋮
𝜚! − 𝜚!

	

	 (39)	
	
Here,	the	contrast	vector	introduces	an	arbitrary	reference	scattering	length	density	ρx	
that	can	be	picked	from	any	species.	This	step	is	exactly	valid	in	the	limit	of	
incompressibility,	which	is	well	respected	for	most	systems.	The	overall	scattering	
function	then	reads:	



	
𝑑Σ
𝑑Ω 𝑄 = lim

!→!
𝝔tr𝑺 𝝔 	

	 (40)	
	
The	incompressibility	limit	of	the	model	is	achieved	by	leaving	the	repulsive	interaction	
go	to	infinite	values.	This	formalism	was	applied	to	many	simple	systems.	In	the	case	of	a	
homopolymer	blend	with	two	arbitrary	polymers	one	obtains:	
	

𝑑Σ
𝑑Ω 𝑄 = (Δ𝜚)! ∙

1
𝜙!𝑉!𝐹!!(𝑄, 1)

+
1

𝜙!𝑉!𝐹!!(𝑄, 1)
− 2𝜒!"

!!

	

	 (41)	
	
The	volume	fractions	ϕi	and	molar	volumes	Vi	refer	to	species	i.	As	seen	from	the	
dimensions,	the	interaction	parameter	χ12	has	the	unit	of	a	reciprocal	volume.	It	can	be	
seen	as	a	dimensionless	interaction	parameter	𝜒	divided	by	the	monomeric	volume,	i.e.	
	

𝜒 = 𝜒/𝑣!	
	 (42)	
	
This	concept	was	derived	for	polymer	chains	with	a	small	perturbation	through	the	
monomer-monomer	interactions.	It	proved	to	be	highly	successful	for	many	kinds	of	
polymer	blends	with	even	more	than	2	kinds	of	monomers	[48].	And	even	colloidal	
particles	could	be	introduced	to	this	formalism	[49].	
	
The	briefly	mentioned	option	of	changing	contrast	is	ideally	possible	for	neutron	
scattering	experiments	by	exchanging	hydrogen	through	deuterium	for	polymers	(or	
solvents).	In	this	way,	specific	aspects	of	the	sample	can	be	highlighted.	Reference	50	
presents	a	thorough	study	to	obtain	the	pure	polymer	scattering	in	a	nanocomposite	
with	spherical	silica	filler	[4].	There,	the	single	polymer	was	replaced	by	a	mixture	of	
hydrogenous	and	deuterated	polymer	that	on	average	possesses	the	same	scattering	
length	density	of	the	particles.	Apart	from	being	successful,	the	preferential	absorption	
of	one	of	the	labeled	polymers	caused	slight	complications	that	still	could	be	modeled	
well.	
	
The	general	approximated	approach	of	the	RPA	can	be	understood	on	two	levels:	First,	
the	fluctuations	of	the	polymer	concentration	that	give	rise	to	the	scattering	as	
described	above	cannot	exceed	the	local	concentration	of	0	or	1.	The	RPA	would	predict	
such	unreasonable	strong	fluctuations	close	to	phase	boundaries,	where	the	system	
tends	to	separation	anyhow.		Second,	the	strong	fluctuations	have	an	impact	on	the	Free	
Energy	of	the	system	that	is	neglected	by	the	RPA,	which	explains	where	the	
simplification	would	need	to	be	corrected.	Reference	51	gives	a	brief	overview	on	
critical	fluctuations	of	homopolymer	blends	and	of	diblock	copolymers.	Historically,	
Schwahn	emphasized	this	topic	for	homopolymer	blends	[52],	that	then	was	observed	
for	diblock	copolymers	by	several	groups,	and	finally	conceptually	taken	to	mixtures	of	
two	homopolymers	and	a	corresponding	diblock	copolymer	[53,54]	for	instance.	While	
the	concepts	have	been	rather	well	understood,	they	were	widely	neglected	in	
polymer/particle	nanocomposites.	But	the	attractive	Casimir	force,	for	instance,	is	
discussed	for	binary	liquids	[55]	and	polymer	solutions	[34]	so	far,	and	detailed	
considerations	for	polymers	are	about	to	be	developed	[56].		



	
10.7.1	Confined	polymers	
	
For	chains	that	are	confined	between	clay	platelets	other	formalisms	were	introduced.	
The	ideal	case	of	a	polymeric	monolayer	results	in	self-avoiding	trails	discussed	by	
Duplantier	[57].	For	slightly	thicker	layers	of	polymers,	the	partially	self-avoiding	trails	
model	the	experimental	behavior.	This	is	often	true,	because	the	minimum	polymer	
layer	thickness	is	ca.	10Å,	which	leaves	space	for	2-4	chains	in	the	normal	direction.	The	
resulting	scattering	function	reads:	
	

𝑆 𝑄 =
1
𝑣!
∙ 1+

𝑄!𝜉!!

1+ 𝜅 ln 𝐾
𝑄!𝜉!!

!!

	

	 (43)	
	
The	classical	correlation	length	𝜉! = 𝑎!/ 𝑣!𝑐!/2	appears	already	for	the	random	phase	
approximation	without	corrections.	The	logarithmic	correction	depends	on	the	Ginzburg	
number	𝜅 = (4𝜋𝑐!𝑎!!)!!,	and	a	less	well	determined	constant	K	of	order	1.	The	
magnitudes	v0,	c0,	and	a0	are	the	2-dimensional	interaction	parameter,	the	monomer	
concentration,	and	the	statistical	segment	length	(divided	by	the	number	 2𝑑 = 2),	
respectively.	The	concentration	and	the	interaction	parameter	are	connected	to	the	3-
dimensional	counterparts	by	c0	~	c3dH,	v0	~	v3d/H,	where	H	is	the	thickness	of	the	
polymer	layer.	The	interaction	parameter	v0	is	normalized	in	a	way	that	it	takes	zero	at	
the	critical	point	(or	spinodal)	and,	therefore,	can	also	be	seen	as	a	reduced	temperature	
v0	~(T	−	T0)γ	with	the	critical	exponent	γ.	
	
The	experimental	thrill	was	to	remove	the	unwanted	scattering	of	the	clay	particles	
from	the	polymer	scattering	[58].	So	the	polymer	scattering	was	rendered	high	by	using	
hydrogenous	and	deuterated	polymers,	and	the	still	high	clay	background	was	
determined	in	a	polymer	concentration	series.	The	rather	pure	polymer	scattering	is	
depicted	in	Figure	12.	One	can	see	that	the	model	describes	the	scattering	well	for	
smaller	Q	<	0.04Å-1,	to	which	the	model	applies.	All	fitting	parameters	are	given	in	
reference	[58].	The	cross-check	of	this	model	was	obtained	by	comparing	the	fitted	
Ginzburg	number	κ	with	the	independently	calculated	κ	that	was	obtained	from	the	
other	fitting	parameters.	Astonishingly,	the	agreement	was	within	a	few	percent	for	the	
LRD80	clay	particles	with	a	diameter	of	80nm,	but	discrepancies	were	observed	for	the	
smaller	clay	diameter	of	20nm.	The	explanation	was	the	polymer	dimension	in	the	
lateral	direction:	Still	several	polymers	were	placed	on	the	LRD80	platelets,	while	the	
number	of	polymers	was	too	small	for	LRD20,	where	an	additional	confinement	might	
occur	through	the	finite	diameter.	
	



	
Figure	12:	The	polymer	scattering	of	2-dimensional	h-	and	d-PEO	polymers	between	
clay	platelets	LRD80	at	different	clay	concentrations.	The	model	fits	correspond	to	eq.	
43.	The	downturn	of	the	fits	towards	higher	Q	at	ca.	0.04Å-1	corresponds	to	the	limit	of	
the	model	where	the	logarithm	turns	negative.	From	Ref.	[58].	
	
	
10.8	Contrast	Variation.	
	
The	basic	understanding	of	experiments	with	varying	contrasts	would	already	be	clear	
in	context	of	the	two	equations	39	and	40	(the	incompressibility	limit	applies,	but	does	
not	need	to	be	mentioned	explicitely).	The	experiment	would	change	at	least	one	
contrast	over	a	wider	range	such	that	one	species	becomes	invisible	at	the	contrast	
match	point.	For	two	different	materials	one	can	obtain	the	experimental	scattering	
length	density.	This	is	for	instance	important	for	natural	materials	such	as	clays,	while	
the	solvent	scattering	length	density	can	be	calculated	on	the	basis	of	the	changing	
deuterium	to	hydrogen	ratio.	Apart	from	the	experimental	match	point,	one	observes	
the	residual	scattering	that	results	from	inhomogeneities	within	the	particles.	For	clay	
particles	there	occur	inhomogeneities	in	the	lateral	direction	due	to	changing	counter	
ions	and	possibly	wrinkles	[27].	
	
These	inhomogeneities	are	also	highly	important	for	particles	consisting	of	two	
materials.	At	the	overall	match	point	the	forward	scattering	is	widely	reduced,	and	the	
internal	structure	remains.	Apart	from	that,	a	single	material	can	be	made	invisible	at	
the	particular	match	point,	and	the	other	material	structure	is	observed	as	a	pure	
structure.	By	this	kind	of	experiment,	a	more	detailed	picture	is	obtained	that	
distinguishes	between	the	two	materials	of	the	particle	[59].	
	
In	multidimensional	contrast	variation	experiments,	the	match	points	of	each	individual	
species	should	be	selected	in	several	series	of	experiments	[21].	This	highlights	
separately	different	aspects	of	the	complicated	structure,	and	the	individual	aspect	can	
be	recovered	from	the	whole	set	of	experiments.	Formally,	the	equation	40	includes	
several	sets	of	contrasts.	If	the	contrast	matrix	were	quadratic,	one	could	solve	for	the	
correlation	matrix	exactly.	To	reduce	the	noise	of	this	procedure,	one	better	over-



determines	the	problem	by	performing	more	measurements	than	actually	needed,	and	
then	a	formal	inverse	matrix	for	ρ	can	be	calculated	by	the	singular	value	decomposition	
method.	The	result	of	this	experiment	are	the	isolated	structures	on	the	diagonal	of	S,	
and	the	cross-correlations	that	tell	about	the	relative	positions	of	different	species.	
While	a	single	scattering	experiment	has	to	deal	with	the	phase	problem,	that	makes	it	
impossible	to	determine	the	real	space	structure	exactly,	the	multidimensional	contrast	
variation	experiment	overcomes	parts	of	this	phase	problem	–	at	least	in	terms	of	the	
different	species.	
	
	
10.9	Resolution	and	Size	Distribution	
	
A	particular	problem	of	scattering	experiments	shall	be	addressed	briefly	here.	Many	
theories	predict	fringes	of	the	scattering	pattern	at	higher	Q,	while	experimentally	the	
curves	are	smeared	[60].	This	simplifies	the	analysis	of	power	laws,	but	reduces	the	
exactness	of	a	size	measurement.	The	instrumental	resolution	arises	from	a	wavelength	
spread	and	a	finite	collimation.	Often,	the	connection	between	a	theoretical	scattering	
function	(index	th)	and	an	experimental	one	(index	exp)	is	given	by	
	

𝑑Σexp
𝑑Ω 𝑄av =

1
Δ𝑄 𝜋

∙ 𝑑𝑄
𝑑Σth
𝑑Ω (𝑄) ∙ exp −

(𝑄 − 𝑄av)!

(Δ𝑄)! 	

		 (44)	
	
using	the	particular	spread	ΔQ	in	terms	of	Q.	While	for	SANS	this	spread	is	in	itself	Q-
dependent,	for	x-ray	scattering	the	resolution	effect	is	often	negligible.	Here,	the	sample	
polydispersity	comes	into	play:	Often	single	or	multiple	lengths	in	the	sample	structure	
are	distributed.	They	would	also	be	described	by	a	smearing,	according	to:	
	

𝑑Σdistr
𝑑Ω 𝑄, ℓav =

1
Δℓ 𝜋

∙ 𝑑ℓ
𝑑Σmon
𝑑Ω (𝑄, ℓ) ∙ exp −

(ℓ− ℓav)!

(Δℓ)! 	

	 (45)	
	
The	monodisperse	scattering	function	(index	mon)	is	smeared	over	the	parameter	ℓ	to	
yield	the	scattering	function	of	a	distribution	(index	distr).	The	smearing	parameter	is	
Δℓ.	The	two	different	origins	of	smearing	are	identical	in	the	case	that	both	focus	on	the	
same	length	scale,	i.e.	𝑄av = 2𝜋/ℓav.	The	simple	exponential	distribution	can	also	be	
replaced	by	a	Schultz-Zimm	distribution	[49].	
	
	
10.9	Dynamics	in	complex	fluids	containing	clay	particles	
	
In	the	former	sections	we	have	introduced	already	most	of	the	important	length	scales	
and	discussed	the	static	structure	factor,	which	are	typically	measured	by	means	of	the	
SANS	technique.	The	accessible	length	scales	of	SANS	lie	in	the	range	of	1	to	100	and	
even	1000nm.	Small	Angle	X-ray	Scattering	(SAXS)	is	an	interesting	alternative	but	most	
applicable	for	the	particle-like	scattering	due	to	the	contrast	definition	in	terms	of	
electron	density	differences	like	clay,	but	not	for	detailed	polymer	scattering.	However,	
scattering	experiments	in	general	allow	for	resolving	dynamics	of	the	sample,	when	the	
energy	change	of	the	probe	(neutron	or	photon)	is	considered.	In	most	cases	of	Soft	
Matter	research,	the	typical	energies	of	neutrons	are	much	more	suitable	for	this	kind	of	



experiments	compared	to	x-rays.	Especially	for	the	long	length	scales	of	several	nm	to	
100nm,	the	method	Neutron	Spin	Echo	(NSE)	spectroscopy	involves	Fourier	times	of	up	
to	0.7µs	[62].	So,	this	quasi-elastic	scattering	method	resolves	energies	of	µeV	to	neV	on	
the	same	length	scales	as	SANS.	
	
The	general	view	on	elastic	scattering	goes	back	to	a	more	elementary	view,	where	
energy	and	momentum	transfers	are	observed,	i.e.:	
	

Δ𝐸 = ℏ𝜔 = 𝐸! − 𝐸!	
	 (46)	
	

Δ𝑝 = ℏ𝑄 = ℏ 𝑘! − 𝑘! 	
	 (47)	
	
The	suffixes	i	and	f	refer	to	the	initial	and	final	stages.	The	method	of	small	angle	
scattering	neglects	the	energy	transfers,	because	they	barely	change	the	momentum	
balance,	while	NSE	spectroscopy	manages	to	resolve	tiniest	energetic	changes.	The	most	
important	elementary	scattering	contribution	is	the	coherent	scattering:	
	

𝑆coh 𝑄, 𝑡 =
1
𝑁 exp 𝑖𝑸 𝒓𝒋 𝑡 = 0 − 𝒓!(𝑡)

!

!,!!!

	

	 (48)	
	
similarly	to	Eq.	5.	The	coherent	scattering	contribution	measures	time-dependent	
correlations	between	the	same	species	against	the	matrix.	For	the	time	t	=	0,	the	classical	
SANS	formula	is	obtained	(Eq.	5).	The	focus	of	the	coherent	scattering	is	the	movement	
of	the	whole	matter	of	species	A	against	the	matrix,	and	so	individual	‘atoms’	do	not	
matter.	For	completeness,	the	incoherent	scattering	focuses	on	the	same	‘atom’	in	the	
sense	of	the	abovementioned	formula	48	with	j	=	l.	Here,	the	individual	‘atoms’	matter,	
and	for	instance	the	exchange	of	the	same	species	would	contribute	to	the	scattering	
signal.	
	
As	formulated	in	Eq.	48,	the	thermodynamic	average	<…>	leads	to	a	symmetric	
scattering	contribution	Scoh(Q,t)	=	Scoh(Q,-t),	because	the	formation	of	fluctuations	is	
symmetric	to	their	decay.	Even	for	non-equilibrium	systems,	the	NSE	method	would	
symmetrize	the	scattering	signal	according	to	𝑆NSE 𝑄, 𝑡 = !

!
𝑆coh 𝑄, 𝑡 + 𝑆coh(𝑄,−𝑡) ,	

which	would	matter	in	flow	experiments	for	example.	
	
The	first	example	that	is	discussed	here	deals	with	rather	diluted	polyethylene	oxide	
(PEO)	polymers	and	clay	particles	dispersed	in	water	[61].	This	system	can	be	seen	as	an	
intermediate	state	for	the	preparation	of	PEO/clay	nanocomposites	by	solvent	casting.	
This	route	was	actually	taken	in	the	example	above	(chapter	10.7.1)	where	the	aim	was	
the	polymer	scattering.	In	the	current	case	the	polymer	was	fully	hydrogenous,	while	
heavy	water	introduced	the	contrast	to	both	clay	and	polymer.	Using	neutron	spin	echo	
spectroscopy,	the	relaxation	of	the	thermal	fluctuations	is	observed.	In	our	case	we	
described	these	relaxations	by	a	stretched	exponential	function	(from	the	Kohlrausch-
William-Watts	theory	[63])	and	an	elastic	background:	
	



𝑆(𝑄, 𝜏)
𝑆(𝑄, 0) = 1− 𝑓el exp − Γ𝜏 ! + 𝑓el	

	 (49)	
	
The	elastic	background	fel	takes	care	of	the	immobile	clay	scattering	(on	the	nanosecond	
time	scale).	The	relaxation	rate	Γ	describes	the	typical	speed	of	the	system	at	the	
observed	scattering	angle	Q,	and	the	positive	stretch	exponent	β	is	closer	to	1	for	
diffusive	motions	and	lower	for	more	confined	motions.	Experimental	NSE	curves	of	
system	are	depicted	in	Figure	13	together	with	the	fitted	curves	of	equation	46.	One	can	
directly	see,	that	at	smaller	scattering	vectors	Q	the	elastic	contributions	are	higher	
while	they	are	lower	at	higher	Q.	This	elastic	contribution	fel	is	depicted	in	Figure	14	as	a	
function	of	the	scattering	vector	Q.	The	function	is	decaying	with	increasing	Q.	This	
means	that	at	small	Q	the	spatial	window	around	the	clay	particles	is	large	such	that	
motions	are	only	observed	between	the	static	window	and	the	outside.	The	fraction	of	
polymers	outside	the	window	is	small	for	large	windows,	but	with	increasing	Q	the	
fraction	becomes	bigger.	The	solid	line	in	Fig.	14	corresponds	to	a	Lorentzian	curve	with	
the	typical	width	Ξ	=	9Å	that	is	connected	to	the	polymer	structure	thickness,	and	is	
called	localization	length.	Within	the	dynamic	interpretation	this	thickness	is	obtained	
quite	naturally,	while	for	pure	SANS	experiments	this	structure	had	to	be	determined	by	
a	series	of	different	polymer	contrasts,	which	were	quite	a	chemical	synthesis	effort.	So,	
using	NSE	we	could	determine	the	adsorbed	polymer	structure	on	clay	platelets,	while	
SANS	with	contrast	variation	delivers	similar	results	[64].	
	
	

	
Figure	13:	Experimental	NSE	relaxation	curves	for	different	scattering	vectors	Q,	and	
different	polymer	concentrations	[(a)	4%	PEO	and	(b)	8%	PEO].	The	solid	lines	are	fit	
curves	with	a	stretched	exponential	and	an	elastic	contribution,	according	to	eq.	49.	
From	Ref.	[61].	
	
	



	
Figure	14:	The	elastic	contribution	fel	as	a	function	of	the	scattering	vector	Q.	This	curve	
is	described	by	a	Lorentzian	with	the	width	Ξ,	the	localization	length,	describing	the	
polymer	thickness	around	the	clay	particles.	From	Ref.	[61].		
	
Another	system	introduces	microemulsions	as	complex	fluids	to	which	the	clay	particles	
are	introduced.	Microemulsions	consist	of	oil,	water	and	a	surfactant	[65].	On	the	nano-
scale,	domains	of	well-separated	oil	and	water	are	found.	The	surfactant	mediates	
between	the	two	phases	and	is	found	as	a	film	between	them,	such	that	the	
microemulsion	appears	macroscopically	homogenous.	For	equal	amounts	of	oil	and	
water,	the	bicontinuous	structure	is	found:	Both	domains	are	continuous	sponge	
structures	that	host	the	other	one,	such	that	on	macroscopic	length	scales	domains	are	
still	connected.	The	latter	property	can	be	proven	by	conductivity	measurements	or	
NMR	[66].	
	
Planar	hydrophilic	surfaces	lead	to	an	ordering	of	the	microemulsion:	A	few	perfect	
lamellar	domains	form	in	the	vicinity	of	the	surface,	before	perforations	induce	a	
continuous	loss	of	the	order	towards	the	bulk,	where	the	microemulsion	is	still	
bicontinuous.	Such	surfaces	can	be	introduced	by	clay	particles.	Rather	large	particles	
(Nanofil)	of	500nm	diameter	result	in	a	well-developed	order	of	the	microemulsion,	
such	that	the	two	typical	time	scales	of	the	lamellar	structure	τlam	and	the	bicontinuous	
structure	τbic	superimpose	for	the	clay	system	to	form	an	average	τclay.	The	ratio	Rτ	is	
defined	through	τclay/τbic,	which	is	depicted	in	Figure	15	as	a	function	of	the	clay	content	
for	different	scattering	vectors	Q.	For	higher	clay	contents	a	clear	deviation	can	be	
observed,	and	for	knowing	τlam	the	fraction	f	of	the	lamellar	region	within	the	whole	
system	can	be	calculated	(Figure	16).	This	volume	fraction	agrees	very	well	with	
independent	measurements	of	the	thickness	of	the	lamellar	region	at	macroscopic	
planar	hydrophilic	surfaces	(ca.	400Å	on	one	side).	The	scientific	field	of	dynamics	of	
complex	fluids	at	planar	surfaces	and	specifically	by	introducing	clay	particles	has	to	be	
seen	in	context	with	the	rheology	of	complex	fluids.	While	NSE	measures	the	nano-scale	
relaxation	times	of	the	fluid,	the	same	speed	is	important	for	the	rheology	of	the	fluid	on	
macroscopic	length	scales.	From	this	knowledge	a	deeper	insight	of	surface	effects	is	to	
be	expected	in	the	near	future.	
	



	
Figure	15:	The	ratio	Rτ	of	relaxation	times	with	respect	to	the	slower	bicontinuous	
microemulsion.	For	higher	clay	contents	a	clear	acceleration	of	the	averaged	time	is	
observed.	From	Ref.	[65]	
	

	
Figure	16:	The	fraction	of	the	lamellar	region	within	the	whole	system	as	obtained	from	
the	relaxation	time	ratio	Rτ.	The	volume	fraction	of	the	lamellar	region	agrees	very	well	
with	independent	measurements	at	macroscopic	planar	hydrophilic	surfaces.	From	Ref.	
[65].	
	
	
10.10	Summary	
	
We	have	seen	that	scattering	experiments	using	neutrons	and	x-rays	resolve	the	
structure	of	clay	systems	on	the	important	nano-scale	where	the	microscopic	
understanding	of	macroscopic	phenomena	is	obtained.	While	WAXS	experiments	
already	start	at	the	atomistic	length	scale,	the	slightly	smaller	angles	resolve	the	stacking	
properties	of	clay	particles	in	terms	of	periodicity	and	regularity.	This	knowledge	is	
highly	relevant	to	judge	about	the	dispersion	state	and	the	connection	of	macroscopic	
properties.	Small	angle	scattering	experiments	(SANS	and	SAXS)	finally	look	at	length	
scales	of	1nm	to	300nm	and	possibly	larger.	Here	large	aggregates	are	observed	and	can	
also	be	connected	to	stacking	properties.	Again,	relations	to	macroscopic	properties	are	
obtained.	Finally,	the	dynamics	of	clay	systems	allows	for	structural	analysis,	but	now	
with	more	details	that	also	have	an	impact	on	the	macroscopic	rheology.	



	
We	have	shown	quite	different	models	that	allow	for	the	quantitative	interpretation	of	
scattering	experiments.	We	hope	that	the	various	examples	and	models	will	attract	and	
extend	the	attention	of	scattering	experiments,	because	the	connection	and	
understanding	of	microscopic	mechanisms	with	macroscopic	behavior	is	still	on	the	way	
of	improvement.	Only	then,	the	next	generation	of	products	using	clay	particles	will	be	
made	accessible	in	an	educated	and	directed	way.	
	
	
10.11	Appendix	
	
The	Perkus-Yevick	structure	factor	for	hard	spheres	is	usually	written	[34]	in	terms	of	
	

𝜚𝐶HS 𝑄 = −
24𝜙
𝜎𝑄 ! 𝛼 𝜎𝑄 ! sin 𝜎𝑄 − 𝜎𝑄 cos 𝜎𝑄

+ 𝛽 𝜎𝑄 ! 2𝜎𝑄 sin 𝜎𝑄 − 𝜎!𝑄! − 2 cos 𝜎𝑄 − 2

+
1
2𝜙𝛼 4 𝜎𝑄 ! − 24𝜎𝑄 sin 𝜎𝑄 − ( 𝜎𝑄 ! − 12 𝜎𝑄 !

+ 24) cos 𝜎𝑄 + 24 	

	 (50)	
	
with	the	coefficients	
	

𝛼 = 1+ 2𝜙 ! + 𝜙! 𝜙 − 4 /(1− 𝜙)!	
	

𝛽 = −!
!
𝜙 18+ 20𝜙 − 12𝜙! + 𝜙! /(1− 𝜙)!	

	 (51)	
	
that	then	is	combined	for	the	structure	factor:	
	

𝑆 𝑄 =
1

1− 𝜚𝐶!" 𝑄 − 𝜚𝐶attr(𝑄)
	

	 (52)	
	
While	eqs.	50-52	describe	the	pure	hard	sphere	interaction,	an	attractive	parabolic	
potential	of	depth	𝐴	between	the	radial	coordinates	σ	and	σ+2R	[67]	would	contribute	to	
corrections	of	the	hard	sphere	structure	factor	by:	
	

𝜚𝑆attr 𝑄 =
96𝜙𝐴

1− 𝜆 !(𝜎𝑄)! 4𝜆 − 2 𝜎𝑄 cos(𝜆𝜎𝑄)

+ 𝜆(𝜆 − 2)(𝜎𝑄)! − 6 sin 𝜆𝜎𝑄 + (2𝜆 − 4)𝜎𝑄 cos(𝜎𝑄)
+ 𝜆 − 1 𝜎𝑄 ! + 6 sin(𝜎𝑄) 	

	 (53)	
	
with	the	energy	parameter	𝐴 = 𝐴/(𝑘B𝑇)	and	the	relative	dimension	𝜆 = 1+ 2𝑅/𝜎.	This	
potential	can	be	used	to	mimic	any	short-range	attraction.		
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